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Abstract

In this project, we provide a general survey of apprenticeship learning (AL) regard-
ing its theory and learning techniques. The AL aims to learn a new policy from
observing the expert in environments without knowledge of reward functions. In
this project, we first define the AL problem rigorously and understand it from the
game-playing perspective. Based on that, we continue to elaborate on the four most
popular AL learning techniques and explain their differences: (I) the projection
method [Abbeel and Ng, 2004] (II) the multiplicative weights algorithm [Syed
and Schapire, 2007] (III) the Frank-Wolfe algorithm [Zahavy et al., 2020] (IV) the
online apprenticeship learning with mirror descent updates [Shani et al., 2022].
Moreover, we implement all these methods over the same benchmarks to compare
their performance empirically.

1 Motivation

Recently, reinforcement learning (RL) is becoming more important for many tasks in robotics where
model-driven approaches such as control theory are intractable Ge et al. [2012], Chakrabarti [2012],
Aghili and Zavlanos [2019]. Typically, the objective of RL is to find a control policy for an agent to
follow given a predefined reward function with or without knowledge of the environment.

However, in many real-world settings, it is often very hard to specify a good reward function in order
for reinforcement learning algorithms to be applied. Usually, it is more feasible to have a task’s
demonstration data provided by the experts, and have an algorithm imitate the expert to learn a policy
will figure out how to imitate doing the task.

One of such frameworks for imitating is Apprenticeship Learning (AL), which aims to learn a policy
imitating the expert demonstration, without the need to recover the exact reward function followed by
the expert. By learning directly from expert demonstrations, AL can bypass the need for a detailed
model of the system, making it more flexible and adaptable to a wide range of tasks Ng and Russell
[2000], Ziebart et al. [2008].

This survey reviews four papers in apprenticeship learning. We compare these papers and understand
the improvements made over one another. Moreover, we implement the papers and evaluate all of
them on several model-free environments to assess their performance and identify the strengths and
limitations of each approach. Our goal is to provide a comprehensive and objective assessment of the
state of the art in apprenticeship learning, and to identify directions for future work in this field.

2 Related Work

In addition to apprenticeship learning, there are two other approaches to learning a policy by imitating
expert demonstrations without the need to recover the expert’s exact reward function:

Behavior Cloning (BC) These class of algorithms formulate the imitation learning problem as a
standard supervised learning task, in which the input state space (such as images) is mapped to a
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control policy. This approach, which was pioneered by Pomerleau [1988] and further developed by
Ross et al. [2011], involves training a machine learning model to predict the expert’s actions given
a set of input states. While BC algorithms can be effective in some cases Ho et al. [2016], Wang
et al. [2017], they suffer from a significant limitation: the resulting control policy may not perform
well on input states that are not present in the training dataset, leading to a phenomenon known as
generalization error. This limitation can make BC algorithms less robust and less adaptable to new
situations.

Inverse Reinforcement Learning (IRL). Rather than simply mimicking the expert’s actions, the IRL
algorithm attempts to solve the imitation learning problem by first learning the expert’s cost function
from data and then using reinforcement learning algorithms to derive a control policy Ng and Russell
[2000]. This approach allows the learner to adapt to new situations more effectively, as it does not
rely on the availability of labeled training data. Additionally, it avoids generalization error as it does
not rely on a learned model. However, IRL may not always be able to accurately recover the expert’s
cost function, which can lead to suboptimal performance Finn et al. [2016]. In contrast, AL does not
require the recovery of the expert’s cost function, making it a simpler and potentially more effective
approach in some cases Abbeel and Ng [2004], Syed et al. [2008].

3 Problem formulation

3.1 Preliminary and Assumptions

Compared to other expert-related reinforcement learning tasks mentioned above, apprenticeship
learning aims to solve a special type of infinite-horizon Markov Decision Process without any
knowledge of the reward function, MDP\R M = (S,A, γ,D, θ, ϕ), consisting of finite state sets S
and action sets A, discount factor γ, initial state distribution D, and transition function θ(s, a, s′) :=
P (s′|s, a). Instead of the reward function R, we are given a set of the state features ϕ : S ×A → Rk.

The policy π : S ×A→ R describes the probability of the agent taking the specific action when in
a specific state. We further introduce the value function in M as, V (π) := E [

∑∞
t=0 γ

tR∗
t |π, θ,D],

where R∗ is the true reward function of the environment. We also define the feature expectation as
µ(π) := E [

∑∞
t=0 γ

tϕ(st, at)|π, θ,D] w.r.t a certian policy π.

Given an expert policy πE , the goal of AL is to find an ϵ-optimal policy π∗, meaning |V (π) −
V (πE)| ≤ ϵ. In practice, expert policies may not be queried in an online fashion. Instead, we collect
m independent trajectories in M with the length H: (si0, · · · , siH). We can then calculate the expert’s
feature expectations as µE = 1

m

∑m
i=0

∑H
t=0 γ

tϕ(sti, a
t).

We make two basic assumptions : (i) the reward is linear w.r.t the features, meaning R(s, a) =
w ·ϕ(s, a) and (ii) ∥w∥1 ≤ 1. Under these assumptions, we can say that we only need to find a policy
whose feature expectation matches the expert’s feature expectation, since

|V (π)− V (πE)| = |w · µ(π)− w · µE | ≤ ∥w∥2 ∥µ(π)− µE∥2 ≤ ϵ. (1)

3.2 Apprenticeship Learning as Min-Max Optimization

As we assume the reward function is unknown, AL is required to find a policy that is ϵ-optimal for
all possible rewards. That is equivalent to saying that the policy we find should be ϵ-optimal in the
"worst" reward function. Another way to interpret this is to consider this as a min-max optimization
problem:

v∗ = max
π

min
R

[V (π|R)− V (πE |R)] (2)

The "min player" attempts to find the reward function for the worst-case scenario, whereas the "max
player" tries to approximate the best policy under the given reward. As long as the policy can be
ϵ-optimal in the worst-case reward, it will be ϵ-optimal for all possible reward functions. It is more
clear with this perspective that AL is different from reward-given RL tasks (e.g., imitation learning
and inverse reinforcement learning) which are merely minimization problems.
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4 Methodology

4.1 Apprenticeship Learning via Inverse Reinforcement Learning

In this work, Abbeel and Ng [2004] introduces the concept of Apprenticeship Learning (AL) via
Inverse Reinforcement Learning (IRL), a framework for imitating expert demonstrations using IRL.
This approach combines the benefits of both apprenticeship learning and IRL to learn a control policy
that can adapt to new situations. It first learns the expert’s reward function from data using IRL, and
then uses an Markov Decision Processes (MDP) solver to derive a control policy that imitates the
expert’s actions. The authors also introduced the projection algorithm (Algorithm 1) as a practical
method for implementing the AL via IRL framework. This algorithm has been shown to be effective
in a variety of settings (e.g. Atari game, car control, etc).

4.1.1 The Projection (PROJ) Algorithm

In order to find a ϵ-optimal policy π∗ whose feature expectations is close to the expert expectations
as stated in Eq. (1), the authors propose the Projection algorithm as follows:

Algorithm 1 The projection method

1: Input: expert’s feature expectation µE , number of iterations T
2: Initialize: choose any π(0), set µ̄(0) = µ

(
π(0)

)
3: for t = 1, . . . , T do
4: Set w(t) = µE − µ̄(t−1)

5: If ||µE − µ̄(t−1)||2 ≤ ϵ, then terminate.
6: Compute π(t) = π(w(t))

∗
, µ(t) = µ

(
π(t)

)
7: α(t) =

(µ(t)−µ̄(t−1))·(µE−µ̄(t−1))
(µ(t)−µ̄(t−1))·(µ(t)−µ̄(t−1))

(This step calculates the projection of µE onto the line

between µ(i−2) and µ(i−1), , as illustrated in Fig. 1.)
8: µ̄(t) = µ̄(t−1) + α(t)

(
µ(t) − µ̄(t−1)

)
9: end for

10: return π(T )

In the first iteration, the initial mixed policy’s feature expectation µ̄(0) is set to µ(0) (line 2), the
initial weight w(1) is set to µE − µ(0) (line 4), and the policy π1 calculated by the reinforcement
learning algorithms (e.g. policy gradient Sammut et al. [1992], value iteration Bellman [1957], etc)
is based on the reward R = w(1) · ϕ (line 6). Then the Projection algorithm operates by iteratively
projecting the learned reward function onto the space of feasible reward functions (line 7), and then
using reinforcement learning algorithms, value iteration Bellman [1957], etc) to learn a control policy
that maximizes the expected reward under the projected reward function (line 6). This process is
repeated until convergence (line 5), resulting in a control policy that imitates the expert’s actions (line
10).

Figure 1: Visualization of the first three iter-
ations of the max-margin algorithm. (Image
credit: Abbeel and Ng [2004].)

Figure 2: FW algorithm directly searches for
a point s in D that correlates the most with
−∇f(x). (Image credit: Jaggi [2013])

Main Theoretical Results: As the first work in apprenticeship learning, Abbeel and Ng [2004]
proved that the algorithm can terminate with O( k

(ϵ(1−γ))2 log
k

ϵ(1−γ) ) iterations, where k is the
dimensionality of the feature space and γ is the discount factor. The sample complexity is given
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by the formula O( 2k
(ϵ(1−γ))2 log

2k
δ ), where ϵ is the distance and δ is the confidence level. Detailed

proofs for these statements can be found in the original paper.

4.2 Apprenticeship Learning via Frank-Wolfe

4.2.1 The Frank-Wolfe (FW) algorithm

Typically to minimize a convex function over a convex set D, we use projected gradient descent
(PGD) algorithm. PGD first computes the derivative ∇f(xt), and then uses that for gradient descent
update zt+1 = xt − η∇f(xt). We then project this point back to the constrained set to get a feasible
solution xt+1 = ProjD[xt − η∇f(xt)], which can be a very expensive operation for many convex
sets and distance metric .

The conditional gradient (CG) method ( proposed by Frank and Wolfe in 1956), on the other hand,
avoids this projecting operation in their steps. The algorithm goes as follow:

Algorithm 2 Frank-Wolfe algorithm

1: Input: A convex set D, a convex function f(x), learning rate γt
2: Initialize: x0 ∈ D
3: for t = 1, . . . , T do
4: st = argmaxs∈D⟨−∇f(xt−1), s⟩
5: Set dt = st − xt−1

6: Update xt = xt−1 + γtdt
7: end for
8: return xt

Similar to PGD, FW first computes gradient ∇f(xt−1). But instead of using this ∇f(xt) for gradient
descent update, which can lead the iterate to be outside of D, FW solves a linear optimization problem
(line 4 of Algorithm 2). This linear optimization directly search for a point s in D that correlates the
most with the direction of negative gradient −∇f(xt−1), which minimize the function f . In another
words, FW algorithm does not use ∇f(xt−1) to update xt but rather use it as a guidance to search
for a point that minimize the function while staying inside the feasible set D as illustrated in Figure 2.
By that, FW replaces projection operation with solving a linear optimization problem, which can be
more computationally desirable in many problems.

Once st has been found, the direction vector dt = st − xt−1 is then used to update xt (line 6 of
Algorithm 2) using step size γt that can be set using linesearch algorithm such as backtracking or
exact linesearch. This update is also equivalent to xt = (1−γt)xt−1+γtst by substituting dt, which
is a convex combination, and hence xt is guaranteed to stay inside D.
Theorem 1. Let f(x) be a convex and β-smooth function. Also let diamD be the diameter of the set
D. Then using a step-size γt = 2

t+1 , Algorithm 2 will computes xt such that

f(xt)− f(x∗) ≤ 2β(diam2
D)

t+ 1
, for t ≥ 2

where x∗ is the minimizer of f(x) over D.

The proof of this theorem is available in Jaggi [2013]. In the next section, we will explain how FW
algorithm can be applied in the AL context and how the above theorem is relevant to analysing the
convergence rate of solving our AL problem.

4.2.2 FW in Solving Apprenticeship Learning

The Projected Algorithm, presented in the previous section, is shown to be an instance of FW
algorithm in Zahavy et al. [2020]. To see that, first let’s denote the following variable correspondence
xt = µ̄t, st = µt in the AL context. In the AL context, the feasible set D is a polytope formed by
vertices, each of which is a feature expectation of a policy. Next let’s define the functionf(x) as
follow: f(x) = 1

2 ||x− µE ||2, which measures the square distance between current policy’s feature
expectations and that of the expert. Line 4 of Algorithm 1 is then equivalent to setting the weight
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to be negative gradient w = −∇f(xt−1) = µE − µt−1. The step size for each iteration is found
through linesearch γt = minγt f(x + γtd) = minγt ||µ̄(t−1) + γt(µ

(t) − µ̄(t−1)) − µE ||2, whose
solution is equivalent to line 7 of Algorithm 1.

Next we apply theorem 1 to obtain the convergence rate of FW in solving AL. Since h(x) is a
1-smooth, 1-strongly convex function and diamD =

√
k/(1− γ) Zahavy et al. [2020] (note that γ

here means the discount rate), FW with AL will converge at a rate O( k
T (1−γ)2 ). This means that

after O( k
ϵ2(1−γ)2 ) iterations, the method will find an ϵ− optimal solution, which is a logarithmic

improvement over the projected algorithm.

4.3 Multiplicavite Weights for Apprenticeship Learning

Syed and Schapire [2007] provides a game-theoretic view of the AL problem, which naturally
leads to a direct application of the multiplicative-weights algorithm [Freund and Schapire, 1999]
for apprenticeship learning (MWAL). This algorithm is computationally faster, but requires the
state/action spaces to be relatively small.

Algorithm 3 Multiplicative Weights Algorithm

1: Input: expert’s feature expectation µE , number of iterations T
2: Initialize: W (1)(i) = 1 for i = 1, · · · k

3: Set β =

(
1 +

√
2 log(k)
T

)−1

4: for t = 1, . . . , T do
5: Set w(t)(i) = W (t)(i)∑

iW
(t)(i)

6: Compute π(t) = π(w(t))
∗

with respect to R = w(t) · ϕ(s)
7: Compute an estimate of feature expectation µ(t) = µ

(
π(t)

)
8: Set Gt(i) = (1−γ)(µ(t)(i)−µE(i))

4 for i = 1, · · · k
9: W (t+1)(i) =W (t)(i) · βGt(i) for i = 1, · · · k

10: end for
11: return π(T )

4.3.1 Apprenticeship Learning as Two-Player Zero-Sum Games

Syed and Schapire [2007] first models this problem to be a two-play zero-sum game. MWAL first
denotes a set of all possible deterministic stationary policies Π in M , whose dimension is O(|S||A|).
Then, it further defines thew game matrix G ∈ k × |Π| as: G(i, j) = µj(i)− µE(i), where µj is the
feature expectation of the j-th possible deterministic policy. As the optimal policy can be represented
as a combination of mixed deterministic policies, finding the optimal policy becomes assigning
different weights to different columns of G. Under the linear reward assumption, by rewriting Eq. 2,
we have:

v∗ = max
ψ

min
w

[w · µ(ψ)− w · µE ] = max
ψ

min
w
wTGψ (3)

where ψ represents a set of mixing weights for all policies in Π. Therefore, the AL is formulated as
solving a two-player zero-sum game, although the game matrix is extremely large.

4.3.2 Multiplicavite Weights for Apprenticeship Learning (MWAL)

Freund and Schapire [1999] described a multiplicative weights algorithm for finding approximately
optimal strategies in games with large or even unknown game matrices. Algorithm 3 describes a
direct adoption of the multiplicative weights algorithm to solve the game mentioned above. Line
6 involves solving MDP under the known reward function, for which a huge set of RL algorithms
can be applied (e.g., value iteration and policy iteration). Line 7 involves computing an estimate of
feature expectations given a certain policy, which is typically done by sampling plenty of trajectories.
Importantly, the complexity of both steps scales with the size of the MDP\R, and not with the size of
the game matrix G. Line 9 shows the exponential gradient descent step.
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Main Theoretical Results: Table 3 shows the comparison of convergence rate and sample complexity
of all offline apprenticeship learning methods. Compared to the PROJ and the FW, MWAL improves
the convergence rate and the sample complexity to O(log k), as proven in Freund and Schapire
[1999]. However, the drawback of this algorithm is also obvious that G cannot be too large meaning
that the state and action space have to be relatively small. However, in practice, we can limit the
dimension of G by only considering a small set of deterministic policies, which has been empirically
proven to be effective.

4.4 Online Apprenticeship Learning (OAL)

Mirror Descent (MD) Policy Update: Originally, Mirror Descent (MD) is an iterative framework
designed to solve convex optimization problems. The core idea is to minimize the sum of 2 terms at
each iteration: (1) a linear approximation of the objective function; (2) a regularization that keeps the
updated estimates close to the current one. Formally, we have

xk+1 ∈ argmin
x∈C

⟨∇f(xk), x− xk⟩+
1

tk
Bψ(x, xk), (4)

whereBψ is the Bregman divergence defined asBψ(x, xk) := ψ(x)−ψ(xk)−⟨∇ψ(xk), x−xk⟩ for
regularization, with ψ being the strongly convex potential function and tk being the step-size. Recent
works Shani et al. [2020], Tomar et al. [2021] adapt MD to RL, leading to MD-style policy update
steps (referred as "MD policy update" in this report) for solving MDPs with theoretical guarantees.

OAL and Differences to Prior AL Methods: One common step used in prior AL methods is "solve
the MDP (i.e. compute the optimal policy) given the current reward or cost per iteration" (i.e. line 6 in
Algorithm 1, line 4 in Algorithm 2, line 6 in Algorithm 3). However, "MDP solving" is a challenging
problem by itself, and typically relies on complex algorithms running for lots of iterations, which
makes prior AL methods computationally expensive and less practical Shani et al. [2022].

To this end, Shani et al. [2022] propose Online Apprenticeship Learning (OAL). The core idea is
to replace the "MDP solving" step with a single Mirror-Descent (MD) policy update. The reward /
cost update is also replaced by MD accordingly. Since one MD policy update is much cheaper than
solving an MDP (e.g. solving an MDP takes numerous MD policy updates), the computational cost
of each iteration can be vastly reduced. Discussions regarding the total computational cost can be
found at the theoretical results paragraph and experiments Sec. 5. Formally, after plugging in the MD
formulation, we have Algorithm 4 Shani et al. [2022].

Algorithm 4 Online Apprenticeship Learning

1: for k = 1, ...,K do
2: Rollout a trajectory by acting πk
3: # Evaluation Step
4: Evaluate Qπ

k

using the current cost ck. Evaluate ∇cL(π
k, c;πE)|c=ck

5: # Policy Update
6: Update πk+1 by an MD policy update with Qπ

k

:
7: πk+1

h ∈ argminπ⟨Q
πk,ck
h , πh⟩+ tπkdKL(πh||πkh).

8: # Costs Update
9: Update ck+1 by an MD step on ∇cL(π

k, c)|c=ck :
10: ck+1 ∈ argminc⟨∇cL(π

k, c)|ck , c⟩+
tck
2

∥∥c−ck∥∥2.
11: end for

Main Theoretical Results: Shani et al. [2022] define the AL regret similar to Eq. (2) as RegAL(K) :=

maxc∈C
∑K
k=1

[
V (πk|c)− V (πE |c)

]
but with a finite-horizon MDP and tabular costs, and derive an

O
(√

H4S2AK +
√
H3SAK2/N

)
regret bound. The first O(

√
K) term is similar to the optimal

regret of solving an MDP. Although it may not lead to a clear conclusion, this gives an encouraging
guess that the total computational cost of OAL may be connected to the one iteration cost of prior
AL methods. The second term is a statistical error term depends on the amount of expert data N we
have. Importantly, the theoretical results of OAL cannot be directly compared against other discussed
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works due to assumption differences. For example, OAL assumes tabular costs while other methods
assume linear costs based on state-action features.

5 Experiments

Despite that theoretical analysis and comparisons have been discussed in Sec. 4, there are still
factors that prevent a direct comparison on the actual performance of the surveyed methods, such
as the gaps between assumptions and realities, and the assumption differences between methods.
Although empirical results are given in corresponding papers (e.g. Abbeel and Ng [2004], Zahavy
et al. [2020], Syed and Schapire [2007], Shani et al. [2022]), these experiments are usually conducted
on inconsistent tasks for different approaches. In addition, some old school methods such as Abbeel
and Ng [2004], Syed and Schapire [2007] did not leverage recent deep Reinforcement Learning (RL)
techniques in their experiments, making their results less comparable to more recent approaches like
Shani et al. [2022]. To this end, we design experiments to compare the surveyed methods in a more
consistent manner. We consider 3 methods to implement and test: PROJ (Abbeel and Ng [2004]),
MWAL (Syed and Schapire [2007]), and OAL (Shani et al. [2022]), on 2 classical control tasks:
Pendulum (Sec. 5.1) and Mountain Car Continuous (Sec. 5.2). We merge FW (Zahavy et al. [2020])
into PROJ since they are equivalent.

Experiment Setup: We use feature-based linear rewards in all experiments. To ensure consistency
among methods, we use Mirror-Descent (MD) policy updates for both (1) each OAL iteration, and
(2) the MDP solving step in other methods. We use Mirror Descent Policy Optimization (MDPO)
Tomar et al. [2021], a deep RL approach, to implement the MD policy updates. Therefore, the policy
is parameterized by a neural network. All implementations are based on Tensorflow and simulators
provided by OpenAI Gym Brockman et al. [2016]. The expert is obtained by learning a policy via
Soft Actor-Critic (SAC) Haarnoja et al. [2018] on the true rewards given by the simulators. Then, we
sample 2k episodes as the expert data.

Metric: We use the mean true rewards of 100 episodes as the performance measurement of a method.
The true reward of each episode is obtained by summing up the true reward of every timestep. Since
we use MD policy updates for all methods and the reward updates are cheap in general, we use the
number of policy updates to approximate the computational cost. Thus, we can visually compare
all methods via the plots of "true reward" vs. "number of policy updates". Note that PROJ (Abbeel
and Ng [2004]) and MWAL (Syed and Schapire [2007]) require to solve an MDP on each iteration,
leading to a inner loop with multiple policy updates. We only compute and plot the true reward for
each outer loop iteration, since the inner loops may not directly optimize the function of interest.

5.1 Task: Pendulum

Task Description: As shown in Fig. 5, we have a pendulum with one end attached to a fixed position.
The other end is free, and can be rotated by applying torque on it. Given a random starting state
with the free end pointing downward (i.e. left side of Fig. 5), the goal is to swing it into an upright
position with zero velocity (i.e. right side of Fig. 5). The definitions of states and actions are given in
Table 1. The true reward is defined as Rgt(s, a) = −(θ2 + 0.1s[2]2 + 0.001a2) with s[0] = cos(θ)
and s[1] = sin(θ), where θ is the angle of the pendulum between [−π, π] with 0 corresponding to the
upright position. Thus, we have the maximum reward R∗

gt = 0 when the pendulum perfectly stops at
the upright position (i.e. target state).

Feature Definition: For features, we directly define it to be the concatenated states and actions
normalized into [0, 1], i.e. ϕ(s, a) = (ŝ, â) ∈ [0, 1]4.

Results: As shown in Fig. 3, all methods successfully converge at the end and achieve comparable
performances to the expert. Although the OAL (Shani et al. [2022]) performance quickly goes up at
the beginning, it does not fully reach the expert-level performance but has a minor gap. Although
OAL still reaches the expert performance at the end, it taks slightly more policy updates than MWAL
(Syed and Schapire [2007]). PROJ (Abbeel and Ng [2004]) follows a similar trend as MWAL, but
with more small oscillations around 10k to 20k policy updates. Overall, we consider all methods have
roughly similar performances on this Pendulum task. We suspect that the simplicity of Pendulum
could make it hard to clearly show the pros and cons of each method.
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Figure 3: Example starting and target states. Figure 4: Example starting and target states.

5.2 Task: Mountain Car Continuous

Task Description: As shown in Fig. 6, we have a 1-D valley with the goal (i.e. the flag) at the top of
the hill on the right side. At the starting state, a car is randomly put at the bottom of the valley. The
objective is to push the car up the hill and reach the goal position. Note that the force is not large
enough to directly push the car to the top of the hill. We need to "swing" the car a bit to get enough
velocity. The definitions of states and actions are given in Table 2. The true reward is defined as
Rgt(s, a) = −0.1a2 + [100 if s[0] ≥ 0.6 (i.e. reach the goal) else 0].

Feature Definition: We first tried the same feature definition as in Pendulum Sec. 5.1, i.e. ϕ(s, a) =
(ŝ, â) ∈ [0, 1]3 where ŝ and â are states and actions normalized to [0, 1]. However, we found that
PROJ (Abbeel and Ng [2004]) and MWAL (Syed and Schapire [2007]) failed to learn reasonable
policies using this naive definition. Thus, we design a more sophisticated feature for PROJ and
MWAL. More specifically, we uniformly split the 2-D state space into 3×3 blocks. We then duplicate
the normalized states ŝ and actions â by 9 times, with each of the replica associated with one block,
denoted as ŝi, âi for i = 1, 2, ..., 9. When the value of ŝ falls in block j, we keep ŝj , âj as their
original values, and set all other ŝi, âi to zeros. In this way, we can enable a piece-wise linear reward
function, with each block has its own reward weights applied on (ŝ, â). Formally, we have the feature
ϕ̂(s, a) = (ŝ1, â1, ŝ2, â2, ..., ŝ9, â9) ∈ [0, 1]27 with (ŝi, âi) = (ŝ, â) if ŝ falls in block i otherwise 0.

Results: As shown in Fig. 4, all methods successfully converge at the end and achieve comparable
performances to the expert. Note that even PROJ (Abbeel and Ng [2004]) and MWAL (Syed and
Schapire [2007]) take only ≤ 4 (outer loop) iterations to converge, they still need more policy updates
comparing to OAL (Shani et al. [2022]) due to the need of solving an MDP per (outer loop) iteration.
This empirically verifies the OAL’s claimed advantage on "reducing the computational complexity of
the algorithm" via "averting the need to solve an MDP in each iteration" Shani et al. [2022]. Moreover,
OAL works on the naive feature definition ϕ(s, a), while PROJ and MWAL don’t, indicating that
OAL may potentially be less limited by the feature complexity. Also, MWAL takes slightly less
iterations than PROJ to stably converge, which is consistent to the theoretical results in Sec. 4.1 and
Sec. 4.3.

6 Conclusion and Future Work

In this project, we focus on surveying apprenticeship learning, a specific RL task that aims at learning
a policy from an expert in environments without any knowledge of the reward functions. We first
define the setting and objective of AL rigorously and then interpret it as a min-max optimization
problem. Based on that, we mainly study several major methods that have been proposed in this area.
We elaborate on the techniques applied to these methods and their advantages and disadvantages.
Empirically, we implement all these methods on the same benchmark to compare their performance
and showcase the results.

We can conclude from the experiment part that OAL has the strongest performance. For future work,
we could replace the mirror descent with its different variants (e.g., Nesterov’s dual averaging or
Mirror Prox), to see whether they can improve the performance even better.
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A Author Contributions

• Ziqian Bai: survey the OAL Shani et al. [2022], and take part in all the implementation

• Minh Bui: survey the FW Zahavy et al. [2020], and take part in all the implementation

• Qiushi Lin: survey the MWAL Syed and Schapire [2007], and take part in all the implemen-
tation

• Jiaqi Tan: survey the PROJ [Abbeel and Ng, 2004], and take part in all the implementation

B Frank-Wolfe Away step

Frank-Wolfe with away step is a variation of the original FW algorithm. The idea is that, the iterate xt
can always be represented as a sparse convex combination of a subset of vertices of D (Caratheodory
theorem) as xt =

∑lt
j=1 αyjyj . Using this information, the algorithm reduces weight from yj that

are not good representing the minimizer and hence take the "away-step". At every time step, the
algorithm will maintain a list of vertices representation S(t) = {y1, . . . , ylt} with lt = |S(t)|. In
addition, it also maintain a corresponding list of coefficients {αyj}

lt
j=1 such that xt =

∑ℓt
j=1 αyjyj .

Algorithm 5 Frank-Wolfe with Away steps (FWAS)

1: Input: A convex set D, a convex function f(x), learning rate γt
2: Initialize: x0 ∈ D
3: for t = 1, . . . , T do
4: yt = argmaxs∈D⟨−∇f(xt), s⟩
5: dFW = yt − xt
6: zt = argmaxz∈S(k)⟨∇f(xt), z⟩
7: dAS = xt − zt
8: if ⟨∇h(xt), dFW ⟩ < ⟨∇h(xt), dAS⟩ then
9: Frank-Wolfe step: d = dFW , γmax = 1

10: else
11: Away step: d = dAS , γmax = αzt/(1− αzt)
12: end if
13: Line-search: γt = argminγ∈[0,γmax] h(xt + γd)
14: Update: xt+1 = xt + γtd
15: Update: S(t+1) and update αy,∀y ∈ S(t)

16: end for
17: return xt

C Specification of Benchmark

Table 1: Specification of task Pendulum.
Description Type Min Max

Action torque float -2.0 2.0

State
free end x coordinate float -1.0 1.0
free end y coordinate float -1.0 1.0

angular velocity float -8.0 8.0
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Table 2: Specification of task Mountain Car Continuous.
Description Type Min Max

Action directional force float -1.0 1.0

State car x coordinate float -1.2 0.6
car velocity float -0.07 0.07

Figure 5: Example starting and target states
of Pendulum.

Figure 6: Example starting and target states
of Mountain Car Continuous.

D Convergence Rate and Sample Complexity

Table 3: Comparison of Convergence Rate and Sample Complexity for Offline Learning
Convergence Rate Sample Complexity

PROJ Abbeel and Ng [2004] O( k
(ϵ(1−γ))2 log

k
ϵ(1−γ) ) O( 2k

(ϵ(1−γ))2 log
2k
δ )

FWAS Zahavy et al. [2020] O( k
(ϵ(1−γ))2 ) O( 2k

(ϵ(1−γ))2 log
2k
δ )

MWAL Syed and Schapire [2007] O( log(k)
(ϵ(1−γ))2 ) O( 2

(ϵ(1−γ))2 log
2k
δ )
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