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Challenges

e Planning paths for multiple agents are usually modelled as NP-hard combinatorial
search problems in discretized worlds with discretized time steps

e Search-based planning algorithms are computationally expensive and cannot gen-
eralize well among instances

e |earning-based methods provide solvers that are computationally efficient but usu-
ally have poor solution quality

e Most multi-agent reinforcement learning (MARL) methods can only deal with in-
stances with small numbers of agents (usually 5-10 agents) and are usually not
scalable when it comes to congested environments

e It is not clear in the literature how various types of cooperation and objectives
among agents can be learned
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Introduction



Problem Definitions: Single-Objective Cooperation
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Vertex Collision Edge Collision

Multi-Agent Path Finding (MAPF)>

e a connected and undirected graph and a set of M agents
e Each agent has a unique start vertex and a unique goal vertex.

e For each time step, each agent can either move to one of its adjacent vertices or
wait at its current vertex.

e Collisions: vertex collisions and edge collisions

e The goal is to find a set of collision-free path, one for each agent, while minimizing
the flowtime (i.e., sum of all path length)

5Stern et al., “Multi-agent pathfinding: Definitions, variants, and benchmarks”. In SoCS, 2019.



Problem Definitions: Bi-Objective Cooperation

Goal / Desired
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Formation Recovery
Moving Agents in Formation (MAiF)®

e maintain close adherence to a designated formation (specified by goal locations)
while moving towards the goals
e The formation deviation .%; quantifies the least effort required to transform from
the current formation to the desired formation:
. M . .
Fri=mina > L |[u" — (v + A)llg,
where A is the element-wise median of {u’ — v/}

e The goal is to minimize (i) both the total (average) formation deviation (summing

up 7 over t) and the makespan (i.e., maximum of all path length) or (ii) a linear
combination of them

6) Lietal, “Moving agents in formation in congested environments”. In AAMAS, 2020



Related Works: Planning

MAPF (Single-Objective Cooperation)

o Conflict-Based Search”(CBS): A two-level search algorithm. The high level con-
structs a constraint search tree by adding constraints to different nodes, while the
low-level plans paths w.r.t these constraints via A* search

o Priority-Based Search®(PBS): A two-level search algorithm. The high level con-

structs a priority search tree by adding partial orderings to different nodes, while
the low-level plans paths w.r.t these partial orderings via prioritized planning

MAIF (Bi-Objective Cooperation)

o SWARM-MAPF?(SWARM): A two-phase method combining swarm-based forma-
tion control with MAPF algorithms. Phase 1 selects a leader, plans its path, and
then partitions it into segments; Phase 2 runs conflict-based search to plan paths
for other agents to follow the leader in those congested segments

e Scalarized Prioritized Planning (SPP): Plan agents’ paths one by one using a
specific (or random) ordering and optimize over the scalarized objective

"Sharon et al., “Conflict-based search for optimal multi-agent pathfinding”. In Artificial Intelligence, 2015.
8H. Ma et al., “Searching with consistent prioritization for multi-agent path finding”. In AAAI, 2019.

9). Lietal, “Moving agents in formation in congested environments”. In AAMAS, 2020.

silver, “Cooperative pathfinding”. In AAAI, 2015.



Related Works: Learning Environments

There are some universal settings that learning-based methods follow which we adopt
as our learning environments

Reward Function Design Free Space

Action Reward Obstacle
Move (up / down / left / right) -0.075
Wait (on goal, away goal) 0, -0.075 Agent
Collision (obstacles or agents) -0.5
Reaching Goal 3 D FOV

e 2-Dimensional 4-neighbor Grid Worlds: 2D grids environments where agents are
only allowed to move along 4 cardinal directions

e Reward Design: we penalize each move with a small negative reward to incentivize
agents to reach their goals as fast as possible

e Partially Observable Environments: each agent can only observe its surrounding
L x L area, namely field-of-view (FOV)

e Homogeneous Multi-Agent Systems: each agent shares the same policy but makes
different decisions based on their observations



Related Works: Learning

PRIMAL!!
e Mixture of A3C (RL) and Behavior Cloning (IL) Vorldsue ey
e Only observe goal direction as path planning guidance o v|
without considering the obstacles ’ Magnitude
e Use neighbouring agents’ goal directions as cooperative ‘A v

guidance (not informative for complex cooperation)
DHC'2and DCC*3
e Independent Q-Learning (IQL)

Unit vector

. . ”]
e Embed communication models ro="
A“

e Utilize single-agent heuristic maps as path planning
guidance (equivalent to obstacle avoidance)

Obstacles Agents'  Neighbors'  Agent's
positions  goals goal

.. . . System design fi PRIMAL
e No explicit guidance for cooperation BAAEI CLE0 el

Usartoretti et al., “Primal: Pathfinding via reinforcement and imitation multi-agent learning”. In IEEE RA-L, 2019.
127, Ma, Luo, and H. Ma, “Distributed heuristic multi-agent path finding with communication”. In ICRA, 2021.
137, Ma, Luo, and Pan, “Learning selective communication for multi-agent path finding”. In IEEE RA-L, 2021.



Single-Objective Cooperation




SACHA: Multi-Agent Heuristic Maps

| [ @]

[] Free sapce

W ovstacie

@ Agent Location

Goal Location

i Agent's FOV

Example of multi-agent heuristic maps. A darker shade means a larger heuristic.

o Make use of heuristic maps from not only the center agent but also its neighboring

agents

e Each cell holds a heuristic value proportional to its shortest path distance to the

goal, and these heuristic maps inform each agent about its paths and neighboring

agents’ potential plans

e These heuristics can be pre-computed before execution with polynomial-time algo-

rithms (e.g., Dijkstra) and will stay constant during execution



SACHA: Soft Actor-Critic and Heuristic-Based Attention

Multi-Head Attention

Qi(0i,a:)

/ Centralized Critics
-~ (only training)

Decentralized Actors
(training and execution)

Decomposition
of FOV

()

Centralized Training and Decentralized Execution (CTDE) and Multi-Agent Actor-Critic

GCN Comm Block a;
(optional)

e Policy network with heuristic-based attention for greater cooperative potentials
e Partially centralized attention critic network for better credit assignment



SACHA: Graph-Based Communication

FOV Size: 5 x 5

Agent's Current Location Communication Network

We also proposed another communication-based variant, named SACHA(C)

e We establish a dynamic communication network G; that depends on agents’ current

positions: each vertex represents one agent, and each edge means two connecting
agents lie within each other’'s FOV

o We run two-layer GCN'*to encode, re-normalize, and pass messages along the
communication network

e It has been shown by other works (e.g., Li et al.!®) that this technique can en-
courage communication among agents

14Kipt’ and Welling, “Semi-supervised classification with graph convolutional networks”. In arXiv, 2016.
15 et al., “Graph neural networks for decentralized multi-robot path planning”. In IROS, 2020.



SACHA: Empirical Evaluation

o Besides learning-based methods (PRIMAL, DHC, and DCC), we also compare
our methods with some planning algorithms with runtime limits: CBS (120s),
PBS(120s), and OrDM*(20s)

Comparison of success rate in different maps

ODrM* - WPBS -~ DHC SACHA
-+ CBS —— PRIMAL  ~+— DCC  ~+— SACHA(C)
random32 (32 x 32) room64 (64 x 64)

4 8 16 32 64 4 8 16 32 64
den312d (65 x 81)

success rate

et

0.8 . N

e —y
64 4 8 6 32 64

number of agents



SACHA: Empirical Evaluation

Comparison of solution quality

Map AT Average Step Per Agent
PRIMAL DHC DCC SACHA  SACHA(C)
4 32.96 35.70 32.83 29.93 31.03
random32 16 45.12 48.67 43.56 41.71 41.30
64 69.40 66.05 88.79 76.47 74.48
4 67.82 71.04 70.80 65.47 67.10
random64 16 89.22 94.22 102.27 83.74 82.17
64 105.12 120.68  154.72 99.02 96.42
4 196.54 86.56 82.99 78.33 81.43
den312d 16 256-00 109.24  108.29 97.86 96.74
64 256-00 153.17  145.21 140.79 142.97
4 355.80 146.12 135.89  131.43 134.59
warehouse 16 492.04 281.37 208.72  192.30 198.72
64 51200 51200 473.92  449.83 437.29

e PRIMAL has the worst performance since behavior cloning from experts (planning
algorithms) hinders the trained model from generalizing toward unseen
environments

e Our methods can outperform DHC and DCC in most cases



Bi-Objective Cooperation




MFC-EQ: Mean Field Formation Control

a=1[0,0,0,1,0] a = [0.25,0.25,0.25,0.25, 0]

Mean Field Reinforcement Learning!®

e Approximate interactions within agents by those between every single agent and
the average effect from the overall population

Qj(sv{ak}ke[l\/l]) = % ZkM:1 Qj(svaivak) ~ Qj(573i75)>

where 3 = Zyzl a¥ is the mean action

e Avoid the exponential growth of agents’ interactions (the curse of dimensionality)
and thus enhance scalability

e Most importantly, mean action can reflect on the formation change

16y Yang et al., “Mean field multi-agent reinforcement learning”. In ICML, 2018



MFC-EQ: Envelop Q-Learning

form. dev.
form. dev.

makespan ‘makespan

Optimum

e Reward: r! = (cl, Z])T, where c/ is the moving cost and .7/ is agent j's contribu-
tion to the formation deviation

e Goal: learn a universal model to minimize ZZ—ZO 'Yt“’T(Zje[M] r{) for any given
linear preference w = (A\,1 — \)T € Q,

e We adopt the Envelope Q-Learning!”to tackle the bi-objective optimization in the
multi-agent settings (optimistic approach)

(TQ)(s,,w) = r(s,a) + 7 Egrup(.js.0 arga{maxu/en maxy wTQ(s', ', w')}

where arg, takes the Q-value that corresponds to the maximal wT@Q

17R. Yang, Sun, and Narasimhan, “A generalized algorithm for multi-objective reinforcement learning and policy
adaptation”. In NeulPS, 2019.



MFC-EQ: Model Design

preference

Position
Encoder

Relative
Positions.

e Observation: encode agents’' observation inside the FOV

e Position: encode agents’ relative positions with others for formation control
e Mean Action: 3 from mean field reinforcement learning
[

Preference: w = (\,1 — A\)T from envelope Q-learning



MFC-EQ: Empirical Evaluation
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Illustration of experimental settings for MAIF

e The start position is located at the top-left corner, and the goal / desired
formation lies at the bottom-right corner

e Agents travel from the top-left corner to the bottom-right corner while
minimizing makespan and formation deviation

e We also conduct the dynamic formation experiment in which we alter the desired
formation after a certain time threshold Ty,



MFC-EQ: Empirical Evaluation

, . Sy Z
o Define the MIX metric: MIX(A) = AT + (1 — A) - =5—
e We first test the model by setting w = (0.5,0.5)T

Comparison of solution quality in different sizes of maps

Success Rate MIX(0.5)
Map SWA- | MFC- SWA- MFC
Size 0 || sta RM EQ chi RM -EQ

32 10 | 1.00 1.00 1.00 39.05 | 32.70 32.30
X 20 | 1.00 0.99 0.99 40.73 | 37.78 35.21
32 30 | 0.79 0.96 0.90 46.90 | 39.87 37.46
48 10 | 1.00 0.99 0.99 67.18 | 53.14 49.56
X 20 | 0.95 0.99 0.96 76.26 | 66.27 62.89
48 30 | 0.74 0.94 0.88 90.48 | 68.91 72.30
64 10 | 1.00 0.99 0.99 | 105.65 | 79.77 76.79
X 20 | 1.00 0.97 0.93 | 114.04 | 94.64 84.80
64 30 | 0.22 0.98 0.90 | 111.62 | 99.98 | 103.47




MFC-EQ: Empirical Evaluation

e Test for adaptability towards various linear preferences

w(A) | Makespan Form. Dev. | MIX(0.1) | MIX(0.3) MIX(0.5) MIX(0.7) | MIX(0.9)
0.1 106.33 14.67 23.84 42.17 60.50 78.83 97.16
0.3 101.14 15.37 23.95 41.10 58.26 75.41 92.56
0.5 98.64 16.84 25.02 41.38 57.74 74.10 90.46
0.7 96.74 19.16 26.92 42.43 57.95 73.47 88.98
0.9 96.42 21.75 29.22 44.15 ‘ 59.09 ‘ 74.02 88.95

e Dynamic Formations: require agents to change formation midway

Success Rate MIX(0.5)
SWA- | MFC- SWA- MFC-
M | SPP RM EQ SPP RM EQ

10 | 1.00 0.98 0.96 88.05 | 115.70 80.47
15 | 1.00 1.00 1.00 90.50 | 137.34 85.95
20 | 0.97 1.00 1.00 95.41 | 135.94 88.75
25 | 0.72 1.00 1.00 | 100.09 | 133.46 92.25
30 | 0.90 0.98 0.93 98.41 | 123.20 96.12
35 | 0.48 0.94 0.87 | 107.58 | 123.76 98.89
40 | 0.25 0.81 0.74 | 110.66 | 109.59 | 101.31

20



Conclusion and Future Work




Conclusion and Future Work

Conclusions

e SACHA and SACHA(C)%address the issues of learning single-objective cooper-
ation in partial observable multi-agent path finding (MAPF), with a focus on
generalizability among different environments

o MFC-EQ'%tackles the challenges of learning bi-objective cooperation in decen-
tralized moving agents in formation (MAIF), with a focus on scalability towards
large-scale instances and adaptability towards any linear preferences

Future Work

e To improve generalizability, a more generalized scheme is to consider meta-learning,
in which one can pre-train a model as initialization and fine-tune to different envi-
ronments

e To solve multi-object path planning tasks, we can apply multi-objective RL algo-
rithms (e.g., Pareto Q-learning) to directly approach the Pareto frontier

e Design algorithms/frameworks for more sophisticated types of cooperation in multi-
agent path planning

18published paper in IEEE Robotics and Automation Letters 2023
195ubmitted paper under review

21



The End

Thank you for listening!
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