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Abstract— We study a decentralized version of Moving
Agents in Formation (MAiF), a Multi-Agent Path-Finding
variant aiming to plan collision-free paths for multiple agents so
that they can reach their goals quickly while staying close to a
desired formation. The agents must balance these two objectives
under partial observation and limited communication. The
maintenance of the formation is determined by the joint state
of all agents, whose dimension increases exponentially w.r.t.
the number of agents, making the learning process intractable.
Furthermore, learning a single policy that can handle different
linear preferences for these two objectives adds to the challenge.
In this paper, we propose mean-field Control with Envelop Q-
learning (MFC-EQ), which provides a scalable and adaptable
learning framework for this bi-objective multi-agent learning
problem. We approximate the dynamic of all agents using
the mean-field theory while learning a universal preference-
agnostic policy with envelop Q-learning. We empirically eval-
uate MFC-EQ over numerous instances and demonstrate that
it can outperform state-of-the-art centralized MAiF baselines.
Furthermore, MFC-EQ tackles more complex scenarios where
the desired formation changes dynamically—a challenge that
existing MAiF planners cannot handle.

I. INTRODUCTION

Multi-Agent Path Finding (MAPF) [1] is a widely used
technique in various multi-agent systems to find collision-
free paths for agents in a shared environment. Applications
include warehouse management [2], airport surface opera-
tions [3], video games [4], and other multi-agent systems [5].
Additionally, many of these applications require agents to
adhere closely to a designated formation to accomplish
collaborative tasks or maintain an efficient communica-
tion network. For example, in warehouse logistics, multiple
robots/vehicles are required to collaborate in transporting
large objects. Maintaining a specific formation is critical
to optimizing transport efficiency or ensuring reliable com-
munication. Moreover, in video gaming or military strategy
simulations, game characters or army personnel must move
in formations to safeguard vulnerable members.

To tackle this challenge, [6] has formalized the bi-
objective problem of Moving Agents in Formation (MAiF)
that combines these two tasks and proposed a centralized
MAiF planner based on the leader-follower scheme and
a search-based MAPF algorithm. However, existing MAiF
planners work only in a centralized setting and do not apply
to practical scenarios where agents do not fully observe
the environment. Furthermore, centralized MAiF planners
suffer from a huge computational burden as the number
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of agents increases and are thus not suitable for planning
in real time. Additionally, the only scalable MAiF planner,
SWARM-MAPF [6], does not have the flexibility to adjust
to the particular preferences between two objectives since
it balances the two objectives only by setting the makespan
allowance between two sets of heuristically determined way-
points, thus not guaranteed to optimize targeted preference.
We propose a novel approach to learning a general MAiF
solver for decentralized settings that can directly adapt to
various preferences of the two objectives.

In the MAPF literature, reinforcement learning and imi-
tation learning [7] have been introduced to solve MAPF in
decentralized settings [8], [9], [10]. However, most learning-
based MAPF solvers learn one homogeneous policy for any
set of agents that treats nearby agents as part of the envi-
ronment. This learning scheme does not translate seamlessly
to decentralized MAiF. Unlike MAPF where the joint action
cost can be directly decomposed to action costs of individual
agents, the formation in MAiF is determined by the joint
state of all agents at any given time. Each agent is thus
required to not only avoid colliding with other agents but
coordinate with them to maintain proximity to the desired
formation. The dimension of the joint state space grows
exponentially with the number of agents, incapacitating the
scalability. Besides, trading off two objectives merely under
partial observation and limited communication make this task
even more difficult.

In this paper, we formalize the decentralized MAiF as a bi-
objective multi-agent reinforcement learning task. The major
contributions of our paper are as follows. We design a practi-
cal learning formalization for MAiF, including specifications
for observations, actions, rewards, and inter-agent communi-
cation. To address the aforementioned challenges of MAiF,
we propose a novel approach called MEAN FIELD CONTROL
WITH ENVELOP Q-LEARNING (MFC-EQ), a multi-agent
reinforcement learning technique that optimizes towards any
linear combination of two objectives for any number of
agents, ensuring a stable and efficient learning process.
MFC-EQ leverages mean-field control to approximate the
collective dynamics of the agents, treating the interaction
of each agent within the formation as influenced by the
collective effect of others. This design choice facilitates
seamless scalability to large-scale instances. Furthermore,
MFC-EQ extends envelope Q-learning to a multi-agent set-
ting, enabling the learning of a universal preference-agnostic
model adaptable to any linear combinations of the two ob-
jectives. To evaluate our method empirically, we extensively
test MFC-EQ across various MAiF instances. Our results



substantiate that MFC-EQ consistently produces solutions
that dominate those generated by several centralized MAiF
planners and scales up well to large numbers of agents
without long planning time. Additionally, the learned policy
of MFC-EQ can directly adapt to more challenging tasks,
including dynamically changing desired formations, which
proves to be difficult for centralized MAiF planners.

II. PROBLEM DEFINITION

In this section, we first describe the standard MAiF
formulation in a convenient terminology to better present
our learning approach. We then discuss how MAiF can be
generalized to a partially observable environment, which is
a more practical problem setting. Finally, we define relevant
concepts and discuss the bi-objective optimization problem
of MAiF.

A. Moving Agents in Formation
In the standard formulation, an MAiF instance is defined

on an undirected graph G = (V,E) in a d-dimensional
Cartesian system. Each location in V can be recognized
by its coordinates v = (v1, . . . , vd) ∈ Rd. In this paper,
the subscripts represent agents’ index numbers and the
boldface font denotes multi-dimensional vectors. We also
define [M ] = {1, . . . ,M}. We have a set of M agents
I = {ai|i ∈ [M ]}. Each agent has a unique start location
si ∈ V and goal location gi ∈ V . The time is discretized, and
between two consecutive time steps, each agent can choose to
wait at the current location or move from v to v′ provided
that (v,v′) ∈ E. We also consider two types of collision
between agents: a vertex collision ⟨ai, aj ,v, t⟩ means agent
ai and aj occupy the same location at the same time step t,
and an edge collision ⟨ai, aj ,u,v, t⟩ happens when ai travels
from u to v while aj travels backward.

The MAiF problem aims to find a set of M collision-
free paths Π = {Πi|i ∈ [M ]} as a solution, where
Πi = (pi0, . . . , p

i
T i) represents agent i’s trajectory. Every

solution will be evaluated by two objectives, makespan
and formation deviation. The makespan can be defined as
T = max1≤i≤M T i, that is, the longest length among
all paths. The formation at time t can be represented
as an M -tuple, ℓ(t) = ⟨p1(t), . . . ,pM (t)⟩. The desired
formation is the combination of all agents’ goal loca-
tions, ℓg = ⟨g1, . . . , gM ⟩. Following the definition in [6],
the formation distance between any two formation ℓ =
⟨u1, . . . ,uM ⟩ and ℓ′ = ⟨v1, . . . ,vM ⟩ indicates the least
effort required to transform from ℓ to ℓ′, defined as:

F (ℓ, ℓ′) := min
∆

M∑
i=1

∥ui − (vi +∆)∥1

=

M∑
i=1

d∑
j=1

|(ui
j − vi

j)−∆j |︸ ︷︷ ︸
def
=F i(ℓ,ℓ′)

, (1)

where j indexes the dimension for each vector and ∆j =
median(

{
ui
j − vi

j

}
i∈[M ]

) is the median for the j-th dimen-
sion. The F i(ℓ, ℓ′) denotes the subpart only dedicated to the
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Fig. 1: Example of moving agents in formation.

agent ai. We consider the average formation deviation per
agent across all time steps, unlike the total formation devia-
tion in [6], and it can be defined as Favg = 1

M

∑T
t=0 F (t),

where F (t) = F (ℓ(t), ℓg). We also consider a mix of these
two objectives:

MIX(λ) = λT + (1− λ)Favg,

which is the linear combination of these two objectives.
There could certainly be non-linear combinations of different
rewards, but, in this work, we only consider the linear cases,
since it has been widely adopted in multi-objective or multi-
task reinforcement learning (e.g., [11]).
Example A simple MAiF example is demonstrated in Fig. 1.
The start formation is ⟨a3, a2, a1⟩ and the goal/desired
formation is ⟨g3, g2, g1⟩. The group of agents cannot go
through the d column while keeping the formation intact,
so they have to change the formation. At the current time
step t, the median position is d2 and the formation deviation
is F (t) = F i(t) + F j(t) + F k(t) = 2 + 0 + 2 = 4.

B. Partially Observable Environments

In this paper, we consider a more practical problem
setting where, instead of assuming the full knowledge of the
environment, each agent can only have a partial observation
of its surroundings. We formulate decentralized MAiF as a
decentralized partially observable Markov Decision Process
(Dec-POMDP) [12]. A Dec-POMDP can be represented as a
7-tuple ⟨S,A, PS ,O, PO, R, γ⟩, where S is the global state
space. A =

∏M
i=1 A

i and O =
∏M

i=1 S
i, where Ai and Si

are agent i’s action and observation space. PS : A×S → S
describes the state-transition function, and PO : A × S →
O is the observation-transition function. R is the reward
function with the discount factor γ.

In decentralized MAiF, we assume the observation and
the state-transition function are deterministic, in which each
agent has full control of its next position and observation by
taking a move or the wait action. Following the settings in
existing learning-based MAPF methods, we formalize this
problem on a 2D 4-neighbor grid, even though our method
can also be easily generalized to other settings. The partial
observability limits each agent’s perception to a L × L
square area with it sitting on the center, defined as its FOV.
Each agent can take actions merely based on their local
observation and limited communication with other agents.

C. Bi-Objective Optimization

We then formulate the goal of this bi-objective optimiza-
tion problem. Each MAiF solution is evaluated as (v, w),
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Fig. 2: Illustration of bi-objective optimums.

where v denotes its makespan and w denotes its average
formation deviation per agent. We first define dominance.
We say r = (v, w) dominates r′ = (v′, w′), denoted as
r ⪯ r′, iff v ≤ v′ and w ≤ w′. A solution is Pareto-
optimal if and only if there does not exist any solution that
can dominate it. The Pareto-optimal frontier is a set of all
Pareto-optimal solutions. In the MAiF setting, we are also
interested in evaluating each solution r by a scalar function
fω(r) = ω⊤r, where ω ∈ Ω is the linear preference and Ω
is the set of all possible preferences. we let ω = (λ, 1−λ)⊤

where 0 ≤ λ < 1. Our goal is to find the convex convergence
set (CSS). The CSS is a subset of the Pareto-optimal frontier,
where for each solution in CSS, there exists a preference
ω such that it minimizes fω among all possible solutions.
Intuitively, as shown in Fig. 2, we can regard the scalar
function as a projection to the preference ω. For example, the
solution C belongs to CSS since it has the smallest projection
into ω compared to others.

III. RELATED WORK

We now discuss related work on mean-field reinforcement
learning and multi-objective reinforcement learning.

A. Mean-Field Reinforcement Learning

Inspired by the mean-field theory [13] from the physics
world, the mean-field reinforcement learning has been pro-
posed in [14] which estimates the dynamic within the entire
group of agents as the interaction between each agent and
the mean effect of all other agents as a whole. As the
dimension of the mean effect is independent of the number
of agents, this method does not suffer from the curse of
dimensionality, providing a general framework for large-
scale multi-agent tasks. This method has been extended to the
partially observable stochastic settings [15], which utilizes
certain distributions to sample agents’ actions without the
necessity of observing them. The sampling process only
serves stochastic games, which does not apply to our task.
This mean-field framework has also been used to solve multi-
type multi-agent tasks [16], where agents are categorized into
different types, and a set of mean effects is considered to
reflect various types of agents.

B. Multi-Objective Reinforcement Learning

There exist three major categories of multi-objective re-
inforcement learning methods. Single-policy methods [17],

[18] convert the multi-objective problem into a single-
objective optimization by using linear or non-linear func-
tions, but these methods cannot manage unknown pref-
erences. Multi-policy methods [19], [20], [21] update on
a set of policies to approximate the real Pareto-optimal
frontiers, which requires immense computational resources.
These methods are only applicable to problems with limited
state and action space. The policy-adaptation methods either
train a meta-policy that adapts to different preferences on the
fly [22] or learn a policy that conditions on different prefer-
ence weights [23], [24], [25]. The Envelop Q-learning [25]
has been proposed to increase sample efficiency by introduc-
ing a novel envelop operator for updating the multi-objective
Q-function, which has become a standard way to tackle
multi-objective problems with linear preferences.

IV. MFC-EQ

In this section, we show how we design the learning
framework for decentralized MAiF. We first design the learn-
ing environment with agents’ observation, communication,
action, and reward functions. Then, we elaborate on the bi-
objective multi-agent learning process based on the mean-
field theory and the envelope Q-learning.

A. Environment and Model Design

1) Observation: As most research in the MAPF com-
munity [1], we study our problem in the 2-dimensional
4-neighbor grids. To mimic many real-world robotics ap-
plications where robots have limited visibility and sense
range, each agent, in our grid world, can only observe its
field of view (FOV), represented by its surrounding L × L
area. Each agent’s observation is represented by 3-channel
feature maps F ∈ RL×L×3. The first two channels indicate
obstacles and other neighboring agents’ positions. Inspired
by some decentralized MAPF solvers [9], [10], the third
channel encompasses the heuristic information where each
grid in the FOV is assigned a value proportional to the short-
path distance from that to the agent’s goal.

2) Action: In 4-neighbor grids, agents can only travel to
their cardinally adjacent grids for each step. The action taken
by agent i at time t, denoted by ait ∈ R5, is a 5-dimensional
one-hot vector with each dimension representing one action
from {up, down, left.right, wait}. The first four actions
take agents to another location and their observation will
shift accordingly. The last action is to have the agent wait at
its current location, and it is especially crucial for formation
control as one may have the choice for other agents to catch
up for lower formation deviation.

3) Multi-Agent Communication: To keep the desired for-
mation, agents not only need to communicate with nearby
agents inside FOVs but also have to reach agents outside
them. We specifically design the communication message
so that it can pass along critical information under low
communication bandwidth.

As in many real-world robot applications, each agent can
only access the pairwise relative positions between other
agents and itself. Assume that the current formation at time



step t is ℓp = ⟨p1, . . . ,pM ⟩ and the desired formation is
ℓg = ⟨g1, . . . , gM ⟩. We define the relative position between
agent i and j as pi,j = pj − pi (resp., gi,j). Agent i
receives {pi,j}j∈[M ] in real time, and it holds the information
of the relative positions in the goal formation, {gi,j}j∈[M ],
which can be calculated before execution. We show that,
only with this information, even without knowing the agent’s
whereabouts, it can still calculate the formation deviation.
As defined in Eq. (1), F (ℓp, ℓg) = min∆

∑M
m=1∥pm −

(gm + ∆)∥1 =
∑M

m=1

∑d
n=1|(pm

n − gm
n ) − ∆n| where

∆n is the median of {pm
n − gm

n }m∈[M ]. Recall that d is
the dimension of agents’ coordinates. It is easy to verify
that F (ℓp, ℓg) is also equal to

∑M
m=1

∑d
n=1|(pm

n − gm
n −

Cn) − ∆′
n| where C is any constant d-dimensional vector

and ∆′
n is the median of {pm

n − gm
n − Cn}m∈[M ], as

all the values and the median are shifted by the same
margin. Let C = pi − gi. We can rewrite the definition
of the formation deviation only using the relative position.∑M

m=1

∑d
n=1|(pm

n − gm
n ) − ∆n| =

∑M
m=1

∑d
n=1|[(pm

n −
pi
n)−(gm

n −gi
n)]−∆∗

n| =
∑M

m=1

∑d
n=1|(pi,m

n −gi,m
n −∆∗

n|
where i is the index of the observing agent and ∆∗

n is
the median of {pi,m

n − gi,m
n }m∈[M ]. Therefore, agent i can

calculate the formation deviation merely based on the relative
positions, which happens at each decentralized agent during
execution with the time complexity of only O(d ·M).

We also mentioned that we can infer the mean action based
on the relative positions. Given pi,j(t) and pi,j(t+1), we can
get that pi,j(t+1)−pi,j(t) = (pj(t+1)−pj(t))−(pi(t+1)−
pi(t)) = aj(t)−ai(t). Hence, agent i can calculate agent j’s
action by aj(t) = pi,j(t+1)−pi,j(t)+ai(t). Therefore, we
pass this to a linear layer to get the relative position encoding.
Besides, each agent can infer other agents’ actions by simply
comparing relative positions in two consecutive time steps,
which will later be used to compute the mean action.

4) Reward: The reward function for agent i after taking
action a at time step t, rit(s

i
t, a

i
t) ∈ R2, is represented by

a 2-tuple. The first element is designated for the makespan.
We modify the individual cost function for makespan from
DHC [10] which, instead, intends to minimize the sum of
all path lengths (a.k.a., flowtime). The moving cost of agent
i at time step t with action ai is:

cit(s
i, ai) =


−0.075 collision-free ai

−0.5 collision (with obstacles or agents)
3 reach goal (first time)

.

Each collision-free action, including move (up, down, left,
or right) and wait (on goal or away goal), is slightly penalized
so that agents are incentivized to approach their goals as
quickly as they can. The second element is for the formation
deviation. As defined in Eq. (1), we add the individual
portion of the collective formation deviation that is dedicated
to agent j, namely F j

t (ℓt, ℓ
g). We negate the formation

deviation so that it will be minimized through maximizing
rewards. Hence, the reward function can be represented as:

rjt (s
j
t , a

j
t ) = (cjt ,−F j

t (ℓt, ℓ
g))⊤. (2)
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Fig. 3: Illustration of the model architecture of MFC-EQ.
The bottom demonstrates the state/observation transition in
the partially observable environment. The agent’s Q-network
gathers information from the environment through partial
observation and limited communication and chooses the next
action accordingly.

5) Model Architecture: Given the partially observable
multi-agent environment, we further design the Q-network,
whose learning algorithm will be introduced later. As in
Fig. 3, we aim to project each agent’s observations and com-
munication messages into a corresponding action. Firstly,
we feed the local observation and relative positions into
two separate encoders. The observation encoder consists
of several stacked convolution layers followed by linear
layers. The relative position encoder includes two simple
linear layers. Then, we concatenate these two encodings and
forward them to another linear layer to obtain the final state
representation, sit, for agent i’s perception at time t. We
then collect other agents’ actions from the previous time step
to calculate the mean action. Lastly, we use stacked linear
layers to project them to the Q-values which condition on the
state, the action, the mean action, and the given preference.
The agent will decide its next action that maximizes the Q-
function produced by the Q-network.

B. Mean-Field and Envelop Optimality

In the rest of this section, we will discuss the details of the
learning algorithm. Learning multiple policy networks, π =
[π1, . . . , πM ], for this bi-objective multi-agent task can be
extremely challenging. Therefore we simplify it by making
some common assumptions.

1) Mean-Field Approximation: The goal of MAiF is to
minimize the makespan and the formation deviation. With
the specifically designed reward function, the return, the
discounted sum of all rewards from the initial joint state
to the goal joint state,

∑
t

∑
j γ

trjt (st,at), can reflect the
actual values for the two objectives. Therefore, the goal of the
learning is to find a set of policies to maximize the general
sum of Q-values argmaxπ1,...,πM

∑M
j=1 ω

⊤Qπj

(sj ,a) with
the given linear preference ω. However, the dimension of



s and a grows exponentially w.r.t. the number of agents,
rendering it infeasible to learn efficiently.

To tackle this problem, we introduce mean-field reinforce-
ment learning. We first lay out two common assumptions
of homogeneity and locality that are made in [14] and
many other multi-agent reinforcement learning works. The
homogeneity assumes each agent shares the same policy,
meaning that πi = πj for all i ̸= j. The locality assumption
comes from partial observability, which suggests that agents’
actions can only depend on their visible surroundings.

Then, assuming the actions are represented by one-hot
vectors, we define the mean action:

ājt =
1

|N i|
∑
j∈N i

ajt , a
j
t ∼ πj(·|sj , ājt−1), (3)

where N i denotes agent j’s neighboring agents and πj

represents its policy. With the assumptions of homogeneity
and locality, under certain preference ω, the local pairwise
interactions can be approximated by the interplay of each
agent with the mean effect from its neighbors:

ω⊤Q(sjt ,at) =
1

|N j |
∑
k ̸=j

ω⊤Q(sjt , a
j
t , a

k
t ) (4)

= ω⊤Q(sjt , a
j
t , ā

j
t ), (5)

where at is the joint action, at is the single-agent action, and
āt is the mean action. Given this approximated Q-function,
we can derive the agent’s policy function with the softmax
parameterization:

πj(ajt |s
j
t , ā

j
t−1) =

exp(βω⊤Q(sjt , a
j
t , ā

j
t−1))∑

a∈Aj exp(βω⊤Q(sjt , a, ā
j
t−1))

, (6)

where β is the Boltzmann parameter.
2) Bellman Optimality Operator: To extend this frame-

work to multi-objective reinforcement learning, we modify
the envelop Q-learning [25] by combining the mean-field op-
erator with the envelop optimality operator. We first condition
all the Q-values on the linear preference ω, as in Q(s,a,ω).
As the standard Q-learning [26], we define the bi-objective
multi-agent Bellman optimality operator T as:

(T Q)(st,at,ω) :=

M∑
j=1

rj(sjt , a
j
t ) + γEst+1

argQ
{

max
ω′∈Ω

M∑
j=1

max
aj∈Aj

ω⊤Q(sjt+1, a
j , ājt+1,ω

′)
}
, (7)

where argQ takes the maximized bi-objective Q-values be-
fore the linear scalarization. This operator resembles the
Bellman optimality operator in the standard Q-learning for
single-agent RL and provides the temporal difference (TD)
target. The difference is that it also optimizes over the
parameter of preference ω. By maximizing ω′ over the
next state and its onward trajectory, this approach provides
an optimistic perspective for its future rewards. Iteratively
applying this operator to the Q-function, we will be able to
reach the convergence of the near-optimal Q-function, which
has been proven in [25].

Algorithm 1: Mean-Field Control with Envelop Q-learning
1 Initialize the Q-network Qθ and the target Q-network Qθ̄
2 Initialize the replay buffer D and set ζ = 0
3 for episode = 1, . . . , E do
4 Initialize āj

0 for all j ∈ [M ]
5 for t = 1, . . . , Tmax do
6 Sample aj

t ϵ-greedily from Qθ by Eq. (6) for all j ∈ [M ]
7 Compute new mean actions āj

t by Eq. (3) for all j ∈ [M ]
8 Take the joint action at = [a1

t , . . . , a
M
t ] from the state s to

the next state st+1

9 Compute the reward rt = [r1, . . . , rM ] by Eq. (2)
10 Store the transition, ⟨st,at, rt, st+1, ā⟩, into D, where

āt = [ā1
t , . . . , ā

M
t ] is the collection of mean actions

11 if update then
12 Sample N transitions from D and Nω preferences from Ω
13 Compute the TD target using the operator in Eq. (7)
14 Update Qθ by minimizing the loss from Eq. (8)
15 Update Qθ̄ with the learning rate α: θ̄ ← αθ + (1− α)θ̄
16 Increase ζ along the predefined homotopy path

C. Double Q-learning

We design our learning algorithm based on the double
Q-learning [27] with two different loss functions and the
target network. Algorithm 1 presents the detailed learning
framework. During the rollout phase (Line 5-10), we sam-
ple the transitions in the multi-agent environment with the
homogeneous policy. After we obtain enough transitions in
the replay buffer, we enter the learning phase (Line 11-14).
Given a mini-batch of N transitions and Nω preferences, we
can estimate the TD target y = (T Q)(s,a,ω) via Eq. (7).
The first loss function can be computed as the L2-norm of
the multi-objective TD:

LA(θ) = Es,a,ω

[
∥y −

M∑
j=1

Qθ(s
j , aj , āj ,ω)∥22

]
.

Although this loss function is close to the true expected
return, the non-smooth surface makes the learning process
difficult in the early steps. We combine this with another ad-
ditional loss function with the projected temporal difference:

LB(θ) = Es,a,ω

[
|ω⊤(y −

M∑
j=1

Qθ(s
j , aj , āj ,ω))|

]
.

LA(θ) provides a closer estimation of the true Q-function,
while LB(θ) makes the landscape of optimization smooth.
We train the Q-network via the homotopy optimization [28]
based on the combination of these two loss functions:

L(θ) = (1− ζ)LA(θ) + ζLB(θ), (8)

where, in our case, we gradually increases ζ from 0 to 1
exponentially as the learning progresses.

V. EMPIRICAL EVALUATION

In this section, we implement MFC-EQ and experimen-
tally evaluate it with other methods on a server equipped
with Intel 2.3GHz 16-Core CPUs and NVIDIA A40 GPUs.
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Fig. 4: Demonstration of experiment environments.

A. Experimental Setups

We use 4-neighbor grids with two obstacle-free corners
in the top-left and the bottom-right. The default obstacle
density for grids outside these two corners is set to be 10%.
The agents start at the top-left corner and travel toward
the bottom-right corner. The formation in the goal position
represents the desired formation. We refer to the size of grids
as map size and the size of corners as formation size. For
each data point, we averaged over 100 samples by crossing
10 random maps and 10 random formations.

B. Centralized Baselines

We compare our method with several methods which have
to plan all paths on centralized servers before execution.

1) Scalarized Prioritized Planning (SPP): Since it is NP-
hard to solve this problem optimally, we come up with an
efficient yet suboptimal baseline based on the prioritized
planning algorithm [29]. We first give each agent a unique
priority, and in that priority order, a low-level A* search
will be invoked to plan the path from the start location to
the goal location while respecting the already planned paths
of all agents with higher priorities. The low-level A* search
uses a scalarized f -value for each state, which is a mix of the
makespan f -value, fMS, and the formation deviation f -value,
fFD:

f(n) = λ
[
cost(vi) + dist(vi, gi)

]
︸ ︷︷ ︸

fMS(n)

+(1− λ)

cost(vi)∑
t=1

F i
P (tn)︸ ︷︷ ︸

fFD(n)

,

where F i
P (tn) is the partial formation deviation among agent

i and all other agents with higher priorities. This baseline
is not complete but, in most cases, can find a possible
solution much more quickly, albeit the solutions usually have
poor quality, especially in congested environments with large
numbers of agents. Moreover, this planner, unlike SWARM-
MAPF, can target any given linear preference.

We use the scalarized f -value to combine these two ob-
jectives. The weights for makespan and formation deviation
are set to λ and 1− λ, respectively. In the experiments, we
vary λ from {0.1, 0.3, 0.5, 0.7, 0.9} to test its performance
under different linear preferences.

TABLE I: Results of MFC-EQ with different preferences
evaluated by different scalarized objectives.

ω(λ)
Make-

span

Form.

Dev.
MIX(0.1) MIX(0.3) MIX(0.5) MIX(0.7) MIX(0.9)

0.1 106.33 14.67 23.84 42.17 60.50 78.83 97.16

0.3 101.14 15.37 23.95 41.10 58.26 75.41 92.56

0.5 98.64 16.84 25.02 41.38 57.74 74.10 90.46

0.7 96.74 19.16 26.92 42.43 57.95 73.47 88.98

0.9 96.42 21.75 29.22 44.15 59.09 74.02 88.95

2) SWARM-MAPF (SWARM): The most effective central-
ized method, SWARM-MAPF, has been proposed in [6],
which combines the swarm-based formation control with
the conflict-based MAPF algorithms. The SWARM-MAPF
is a two-phase algorithm. In Phase 1, it first calculates the
lower bound of the makespan B = max1≤i≤M dist(si, gi).
Given a user-provided parameter w ≥ 1, SWARM-MAPF
selects a leader from the group of agents such that its path,
whose length is bounded by wB, can be sufficiently far away
from the obstacles and thus others agents can preserve their
formation as much as they can. In Phase 2, it will invoke the
modified conflict-based search [30] (CBS-M) to minimize
the makespan and replanning some critical segments. This
planner is complete and suboptimal, but it cannot specifically
target any given preference, since we cannot control the
trade-off between two objectives based on the parameter w.

3) Joint State A* (JSA*): The joint state A* [31] directly
applies the ϵ-constraint search algorithm [32] in the joint
state space. The joint state assigns all agents a set of different
locations. The operator assigns each agent a set of non-
colliding move or wait actions. The OPEN list sorts nodes
based on makespan, while the FOCAL list breaks ties based
on the formation deviation. Details of this algorithm can be
found in [6]. Since the joint state space grows exponentially
w.r.t. the number of agents, this method can only be applied
to instances with relatively small agents (less than 5 agents in
our setups). By varying the ϵ in the focal search, this method
is guaranteed to find the Pareto-optimal frontier.

C. Main Results

1) Linear Preferences: We first evaluate the ability of
our learned Q-Network to adapt to different preferences. We
use the environment that has 16 agents with 48 × 48 map
size and 9× 9 formation size. We test different preferences
ω = (λ, 1 − λ)⊤ by varying λ from 0.1 to 0.9. We also
evaluate each result under different MIX(λ) objectives by
varying λ from the same set of values. Table I provides 5
different solutions, and every MIX column marks the solution
that minimizes the projection onto that particular preference.
As we can observe, all MIX(λ) objectives are minimized
by feeding the corresponding preference ω(λ) into the Q-
network. This suggests that the learned Q-network using
MFC-EQ can adapt to different preferences and produce
multiple solutions that fit the given preferences.



TABLE II: Results for MFC-EQ and centralized baselines
with different numbers of agents in various sizes of grids.

Success Rate Makespan Form. Dev. MIX(0.5)

Map

Size
M SP

P

SW
A

-
R

M
M

FC
-

E
Q

SP
P

SW
A

-
R

M

M
FC
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-
R

M

M
FC

-
E

Q

SP
P

SW
A

-
R

M

M
FC

-
E

Q

32
×
32

10 1.00 1.00 1.00 48.30 59.32 60.24 29.79 6.07 4.35 39.05 32.70 32.30

20 1.00 0.99 0.99 49.03 63.17 60.38 32.42 12.38 10.04 40.73 37.78 35.21

30 0.79 0.96 0.90 51.54 59.09 54.59 42.25 20.64 20.32 46.90 39.87 37.46

48
×
48

10 1.00 0.99 0.99 80.44 98.10 88.07 53.91 8.18 11.05 67.18 53.14 49.56

20 0.95 0.99 0.96 82.07 108.84 104.28 70.44 23.70 21.49 76.26 66.27 62.89

30 0.74 0.94 0.88 84.92 101.52 107.42 96.04 36.30 37.18 90.48 68.91 72.30

64
×
64

10 1.00 0.99 0.99 113.38 144.54 137.14 97.92 15.00 16.43 105.65 79.77 76.79

20 1.00 0.97 0.93 114.56 156.03 141.26 113.52 33.24 28.34 114.04 94.64 84.80

30 0.22 0.98 0.90 115.59 142.65 145.51 107.64 57.31 61.43 111.62 99.98 103.47

TABLE III: Results for MFC-EQ and centralized baselines
under different formation sizes in various sizes of grids.

Success Rate Makespan Form. Dev. MIX(0.5)

Map

Size

Form

Size SP
P

SW
A

-
R

M
M

FC
-

E
Q

SP
P

SW
A

-
R

M

M
FC

-
E

Q

SP
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R

M
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-
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M

M
FC

-
E

Q

32
×
32

7× 7 0.94 1.00 0.97 53.81 66.40 68.30 44.66 12.37 9.06 49.24 39.39 38.68

9× 9 1.00 1.00 1.00 48.56 63.20 67.33 29.34 9.10 8.72 38.95 36.15 38.03

11× 11 1.00 1.00 1.00 44.18 57.75 55.12 20.80 7.03 8.32 32.49 32.39 31.72

48
×
48

7× 7 0.98 1.00 0.87 86.26 110.94 107.37 82.85 19.84 22.40 84.56 65.39 64.89

9× 9 0.93 0.96 0.93 81.49 109.67 98.64 65.74 21.03 16.84 73.62 65.35 57.74

11× 11 1.00 1.00 1.00 77.06 105.06 97.26 60.65 15.12 14.08 68.86 60.09 55.67

64
×
64

7× 7 0.87 0.99 0.96 118.64 155.36 138.84 115.38 31.07 55.42 117.01 93.22 97.13

9× 9 1.00 1.00 0.96 113.87 153.33 133.92 108.57 25.95 33.20 111.22 89.64 83.56

11× 11 1.00 0.95 1.00 109.43 149.61 131.08 97.68 23.02 27.75 103.56 86.32 79.42

2) Number of Agents: We evaluate our methods under
different numbers of agents in different map sizes and
compare the results with centralized baselines. The λ is
set to 0.5 for SPP and MFC-EQ. The w is set to 1.0
for SWARM. The runtime limit is only 30 seconds for
MFC-EQ and 5 minutes for SWARM and SPP. Due to the
partially observable environment, our method naturally does
not have perfect success rates, but they are relatively high and
acceptable. As we can observe from Table II, SWARM has
greater performance in almost all the test cases. We also can
see when projected to the demanded preference, our method
can outperform SWARM in most instances. This experiment
shows that our method can scale up well to instances with
large numbers of agents in different sizes of maps.

3) Formation Size: We repeat the experiment above
with various formation sizes. We choose different sizes of
obstacle-free corners in which the formation is randomly
generated. The larger the corner is, the more spread out the
formation will be. The number of agents is fixed at 16. As
shown in Table III, we see that smaller formations are usually
more difficult to solve, resulting in larger makespan and for-
mation deviation. Compared to SWARM, SPP generally has
a better makespan but much worse formation deviation and
MIX. MFC-EQ solves most instances with greater solution
quality in both objectives when compared to the baselines.

TABLE IV: Results for MFC-EQ and centralized baselines
for tests of dynamic formations

Success Rate Makespan Form. Dev. MIX(0.5)

M SP
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-
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M
M
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A

-
R

M

M
FC
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Q

10 1.00 0.98 0.96 48.19 59.00 56.33 127.90 172.40 104.61 88.05 115.70 80.47

15 1.00 1.00 1.00 48.29 63.85 57.56 132.71 210.82 114.33 90.50 137.34 85.95

20 0.97 1.00 1.00 49.64 63.60 59.07 141.18 208.28 118.42 95.41 135.94 88.75

25 0.72 1.00 1.00 50.56 62.58 61.29 149.61 204.33 123.20 100.09 133.46 92.25

30 0.90 0.98 0.93 50.00 59.31 62.50 146.82 187.08 129.74 98.41 123.20 96.12

35 0.48 0.94 0.87 51.75 57.87 64.71 163.40 189.64 133.07 107.58 123.76 98.89

40 0.25 0.81 0.74 52.68 54.12 65.29 168.64 165.05 137.33 110.66 109.59 101.31
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Fig. 5: Trade-off of makespan and formation deviation.

4) Dynamic Formation: We also put these methods into
more challenging tests where the agents will be asked to
adjust to different formations on the fly. We evaluate agents’
formations with one desired formation before Tth = 30 and
another different formation after that. The centralized scheme
cannot handle such tasks as agents’ paths will have to be
planned before execution. In our method, we can simply
notify each decentralized agent of the new formation which
will result in different ways of calculating relative positions,
and therefore the agents can adjust to the new formation
seamlessly. The results are shown in Table IV, suggesting
that our method has the flexibility to tackle changeable
formations, while others result in much larger deviation.

5) Makespan and Formation Trade-off: We further com-
pare our method with others under different preferences.
Due to the limited scalability of JSA*, we first use the
environment with 20×20 map size, 3×3 formation size, 15%
obstacle density, and 3 agents. We vary ϵ of JSA* from 1.0
to 1.8 and w of SWARM from 1.0 to 1.6. The value of λ for
ω in MFC-EQ is varied from 0.1 to 0.9. JSA* can provide
the Pareto-optimal frontier only for small-scale instances.
We then repeat this experiment in larger instances with
32×32 map size, 9×9 formation size, and 20 agents. Fig. 5
shows the results. Although SPP is also tested, it only gives
solutions that have near-optimal makespan but significantly
larger formation deviation than the shown results. In large-
scale cases, SWARM tends to fluctuate, meaning that, even
given more makespan allowance, it may result in solutions
with worse formation deviation. The envelope generated by
our method is near-convex and can cover all solutions from
SWARM, albeit still suboptimal. It also has a wider range
of makespan with greater solution variety.



VI. CONCLUSION AND FUTURE WORK

We proposed MFC-EQ, a general Q-learning framework
for solving decentralized MAiF with partial observation
and limited communication. MFC-EQ utilizes the mean-
field approximation to simplify the complex multi-agent
interaction and employs the envelop Q-learning to enable the
adaptability to various preferences for this bi-objective task.
Our theoretical proofs further show that the combination of
these two operators can still converge to a fixed optimum.
Empirical results demonstrate that MFC-EQ outperforms
existing centralized baselines in most cases and is more ver-
satile in handling dynamically changing desired formations.
Moreover, MFC-EQ is not limited to solving MAiF and
has great potential to be generalized to other multi-objective
tasks in multi-agent systems.

Although we have great performance in the first attempt
at this task, there is certainly room to improve as seen
in the experimental results. One promising direction is to
design a mixing network [33], [34] to estimate the joint
action-value function for handling both objectives. We could
also consider applying other multi-objective RL algorithms
that can directly approach the Pareto frontier (e.g., [21]).
In terms of agents’ policy networks, we could integrate the
current architecture with more complicated network designs
with possible communication mechanisms. We leave these
directions to the future.
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APPENDIX

In this appendix, we provide a theoretical analysis of the proposed method.

A. Mean-Field Approximation in Multi-Objective Reinforcement Learning

In Section IV-B, we have Eq. 5 that gives an approximation for all pairwise interactions among agents. Here, we provide
a theorem to analyze the legitimacy of such approximation in the context of multi-objective reinforcement learning.

Theorem 1 (Mean-field Approximation): With the assumptions of homogeneity and locality, under certain preference ω,
the local pairwise interactions can be approximated by the interplay of each agent with the mean effect from its neighbors:

1

|N j |
∑
k ̸=j

ω⊺Q(sjt , a
j
t , a

k
t ) ≈ ω⊺Q(sjt , a

j
t , ā

j
t ).

Proof: First, we denote the difference between each neighboring agent’s action and the mean action as δj,kt = akt − ājt
for agent j where ājt is the mean action. According to the definition of the mean action,

∑
k ̸=j δ

j,k
t = 0. Assuming the given

Q-function is twice-differentiable, we then approximate each pairwise Q-function at ājt w.r.t. akt using Taylor’s theorem:
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We first drop the second term since
∑

k ̸=j δ
j,k
t = 0. Given that the Q-functions are L-smooth, we know that for each

dimension (objective) i of Qj , we have that ∇2Qj
i ⪯ LI|A|, meaning that σmax(∇2Qj

i ) ≤ L and σmin(∇2Qj
i ) ≥ −L, where

σmax is the largest eigenvalue and σmin is the smallest eigenvalue. Without the loss of generality, we then limit the preference
ω such that |ω| = 1. As mentioned above, in our task, we define ω = (λ, 1− λ)⊺, which satisfies this condition. Then the
largest eigenvalue of the Hessian matrix of ω⊺Qj is:
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) (Cauchy–Schwarz inequality)
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t ))|) ≤ L. (|ω| = 1 and σmax ≤ L)

Similarly, we can also have σmin(∇2ω⊺Qj(sjt , a
j
t , ā

j
t )) ≥ −L. Since the Hessian matrix is symmetric and diagonalizable,

we can apply the orthogonal decomposition: ∇2ω⊺Qj(sjt , a
j
t , ā

j
t ) = U⊺ΣU , where U is an orthogonal matrix and Σ :=

diag[σ1, . . . , σ|A|] is the eigenmatrix of ∇2ω⊺Qj(sjt , a
j
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t ). It can be shown that
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j
t )(δ

j,k
t ) =(δj,kt )⊺U⊺ΣU(δj,kt )

≤σmax(U
⊺δj,kt )2

=L · (δj,kt )⊺(δj,kt ) (U⊺U = 1 and σmax ≤ L)
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≤2L. (one-hot encoding)

Similarly, we can show that (δj,kt )⊺∇2ω⊺Qj(sjt , a
j
t , ā

j
t )(δ

j,k
t ) ≥ −2L. Therefore, we prove that this term is bounded by

[−2L, 2L]. In this symmetrical range, with L being relatively small and the assumptions of homogeneity and locality, these
terms across the neighborhood tend to cancel each other, resulting in the third term close to 0. Finally, we prove that
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B. Convergence of MFC-EQ

Here, we provide a theoretical analysis of the convergence of MFC-EQ. The multi-object multi-agent Bellman operator
can be regarded as a combination of the mean-field operator and the envelop optimality operator. However, it is not obvious
that the combined operator can still guarantee the convergence of Q-function to any fixed optimum.

To analyze the convergence, we first define the metric of distance between any two considered Q-function.
Definition 1: The distance between any two Q-functions Q and Q′ in Q ⊆ Sj ×Aj × Āj × Ω → R2 is defined as:

d(Q,Q′) := max
s∈S,a∈A

ω∈Ω

∣∣∣ M∑
j=1

ω⊺(Q(sj , aj , āj ,ω)−Q′(sj , aj , āj ,ω))
∣∣∣,

where ā is the mean action defined by Eq. (3).
This metric forms a complete pseudo-metric space. We then generalize the theorems from [25] to multi-agent environments

over the defined metric space ⟨Q, d⟩. The proofs follow the framework of the well-known Banach’s Fixed-Point Theorem.
We first define the optimal Q-function and prove that it is a fixed point of the operator T in Eq. (7).

To prove that MFC-EQ is still guaranteed to converge in multi-agent systems, we follow the proof framework of the
well-known Banach’s Fixed-Point Theorem. We first define the multi-objective multi-agent Bellman optimality operator T .
Then we prove the following theorems. Theorem 2 states that there exists an optimal Q-function that is a fixed point under
the multi-objective multi-agent operator T . Theorem 3 states that T is a contraction map, meaning that iterative applying
it to the Q-function will lead to a closer distance to the fixed point. Lastly, Theorem 4 concludes that in the pseudo-metric
space ⟨Q, d⟩, T results in convergence to the optimal point.

Theorem 2 (Fixed Point): Let Q∗ be the optimal Q-function under the preference ω, defined as:

Q∗ = argQ max
π

Eτ∼(s,a,π,PS)

[ ∞∑
t=0

γtω⊺
M∑
j=1

rj(sjt , a
j
t )

]
,

where τ denotes the trajectory under π. Then, Q∗ is a fixed point under T , that is, Q∗ = T Q∗.
Proof: We first expand ω⊺T Q∗:

ω⊺T Q∗ = ω⊺T argQ max
π

E
[ ∞∑
t=0

γtω⊺
M∑
j=1

rj(sjt , a
j
t )

]
(definition of Q∗)

= ω⊺
M∑
j=1

rj(sjt , a
j
t ) + γEst+1

M∑
j=1

max
aj∈Aj

max
ω′∈Ω

ω⊺ argQj max
π

E τ∼π
s0=st+1

[ ∞∑
t=0

γtω′⊺
M∑
j=1

rj(sjt , a
j
t )

]
(definition of T )

Assume that ω′
∗ is the maximum and the corresponding policy is πω′

∗
. It can be shown that ω⊺ argQj maxπ Q(ω) ≤

maxω′ ω⊺ argQ maxπ Q(ω′) due to the definition of maxω′ . We also know that maxω′ ω⊺ argQ maxπ Q(ω′) = ω⊺Qπω′
∗ ≤

ω⊺ argQ maxπ Q(ω) due to the definition of argQ and maxπ . Hence, the two terms have to be equal to avoid contradictory,
as in ω⊺ argQ maxπ Q(ω) = maxω′ ω⊺ argQ maxπ Q(ω′). We plug that into the equation above.

= ω⊺
M∑
j=1

rj(sjt , a
j
t ) + γEst+1

M∑
j=1

max
aj∈Aj

ω⊺ argQj max
π

E τ∼π
s0=st+1

[ ∞∑
t=0

γtω⊺
M∑
j=1

rj(sjt , a
j
t )

]

= ω⊺
M∑
j=1

rj(sjt , a
j
t ) + γEst+1

ω⊺
M∑
j=1

argQj max
π

E τ∼π
s0∼PS(·|sjt ,π(s0))

[ ∞∑
t=0

γt
M∑
j=1

rj(sjt , a
j
t )

]
(rearrange)

= ω⊺
M∑
j=1

rj(sjt , a
j
t ) + γ argQ max

π

M∑
j=1

ω⊺E τ∼π
s0∼PS(·|sjt ,π(s0))

[ ∞∑
t=0

γt
M∑
j=1

rj(sjt , a
j
t )

]
(homogeneity)

= ω⊺
M∑
j=1

rj(sjt , a
j
t ) + γ argQ max

π
ω⊺E τ∼π

s0∼PS(·|sjt ,π(s0))

[ ∞∑
t=0

γt
M∑
j=1

rj(sjt , a
j
t )

]
(definition of argQ)

= ω⊺ argQ max
π

ω⊺E τ∼π
s0=sjt

[ ∞∑
t=0

γt
M∑
j=1

rj(sjt , a
j
t )

]
(rearrange)

= ω⊺Q∗. (definition of Q∗)

For any arbitrary ω, we have ω⊺Q∗ = ω⊺T Q∗ ⇒ ω⊺(Q∗ − T Q∗) = 0. As defined in Eq. (??), since all the observation
spaces and action spaces for each agent are essentially the same, we can finally conclude that Q∗ = T Q∗.

We then state that the operator T forms a contraction mapping under the metric d in Q-function space Q.



Theorem 3 (Contraction): T forms a contraction mapping on the pseudo-metric space ⟨Q, d⟩, that is, for any Q,Q′ ∈ Q,
d(T Q, T Q′) ≤ γd(Q,Q′), where γ (0 ≤ γ < 1) is the discount factor.

Proof: We first expand the expression of d(T Q, T Q′):

d(T Q, T Q′) = max
s∈S,a∈A

ω∈Ω

∣∣∣ M∑
j=1

ω⊺(
[
T Q(sj , aj , āj ,ω)

]
j
−

[
T Q(sj , aj , āj ,ω)

]
j
)
∣∣∣

= max
s∈S,a∈A

ω∈Ω

∣∣∣ M∑
j=1

γ · ω⊺

[
Es′ argQj

{
max

ω′
Q∈Ω,aj

Q∈Aj

ω⊺Q((s′)j , ajQ, (ā
′)j ,ω′

Q)
}

− Es′ argQj

{
max

ω′
Q′∈Ω,aj

Q′∈Aj

ω⊺Q′((s′)j , ajQ′ , (ā
′)j ,ω′

Q′)
}]∣∣∣

We first apply the Cauchy–Schwarz inequality to pull the sum over all the agents out. We then loosen the expectation to
the maximum over the next state. Next, we drop the ω⊺ inside argQ as we did in Theorem 2. We will have the following
bound.

≤ γ · max
s′∈S,ω∈Ω

M∑
j=1

∣∣∣ max
ω′

Q∈Ω,aj
Q∈Aj

ω⊺Q((s′)j , ajQ, (ā
′)j ,ω′

Q)− max
ω′

Q′∈Ω,aj

Q′∈Aj

ω⊺Q′((s′)j , ajQ′ , (ā
′)j ,ω′

Q′)
∣∣∣

Let a∗
Q and ω∗

Q be the optimal vectors that maximizes Q. Without the loss of generality, we assume that
ω⊺Q(sj , aj , āj ,ω′) ≥ ω⊺Q′(sj , aj , āj ,ω′). Then we continue the expansion and rearrangement.

. ≤ γ · max
s′∈S,ω∈Ω

M∑
j=1

∣∣∣ω⊺Q((s′)j , (a∗)jQ, (ā
′)j ,ω∗

Q)− max
ω′

Q′∈Ω,aj

Q′∈Aj

ω⊺Q′((s′)j , ajQ′ , (ā
′)j ,ω′

Q′)
∣∣∣

≤ γ · max
s′∈S,ω∈Ω

M∑
j=1

∣∣∣ω⊺Q((s′)j , (a∗)jQ, (ā
′)j ,ω∗

Q)− ω⊺Q′((s′)j , (a∗)jQ, (ā
′)j ,ω∗

Q)
∣∣∣

≤ γ · max
s∈S,a∈A

ω∈Ω

M∑
j=1

∣∣∣ω⊺Q(sj , aj , āj ,ωQ)− ω⊺Q′(sj , aj , āj ,ωQ)
∣∣∣

= γ · d(Q,Q′)

Therefore, we prove that d(T Q, T Q′) ≤ γ · d(Q,Q′), and thus T is a contraction mapping over Q.
Finally, we show that by iterating T to any Q-function, it will asymptotically converge to the fixed optimum under d.
Theorem 4 (Convergence): Given the defined Q∗ in Theorem 2 and the contraction mapping T on the pseudo-metric

space ⟨Q, d⟩ in Theorem 3, iterating T leads to convergence to Q∗, for any Q ∈ Q, that is, lim
n→∞

d(T nQ,Q∗) = 0.
Proof: We prove that {T nQ} is a Cauchy sequence under the metric d. We first look at

d(T m+1Q, T mQ) ≤ γd(T mQ, T m−1Q∗) ≤ · · · ≤ γmd(T Q,Q).

For any m and l (w.l.o.g., m > l), by the triangular inequality we have

d(T mQ, T lQ) ≤ d(T mQ, T m−1Q) + · · ·+ d(T l+1Q, T lQ)

≤ (γm−1 + · · ·+ γl) · d(T Q,Q)

=
γm − γl

1− γ
· d(T Q,Q) ≤ γm

1− γ
· d(T Q,Q)

Since 0 ≤ γ < 1, we know that d(T mQ, T lQ) will converge to 0 as m, l → 0, and hence {T nQ} is a Cauchy sequence.
We can further conclude that lim

n→∞
d(T nQ,Q∞) = 0 such that d(Q∞,Q∗) = 0 which yields that lim

n→∞
d(T nQ,Q∗) = 0.

These theorems guarantee that through applying our proposed operator repeatedly, any initialization of the Q-function can
converge to a point that is inherently equivalent to the fixed optimum. Even with one homogeneous Q-function distributed
to multiple agents, the Q-learning can be tractable and sample-efficient. This generalization is beneficial not only to our
problem but to other homogeneous multi-agent systems.


