QIUSHI (MAX) LIN

Homepage: https://qiushi-lin.github.io Email: qiushi_lin@sfu.ca

RESEARCH INTERESTS

Developing theoretically principled machine learning algorithms, with a focus on reinforcement learning, online learning, and multi-armed bandits

EDUCATION

Simon Fraser University (SFU), Burnaby, Canada	2021 - 2023
M.Sc. in Computing Science (Thesis-Based Program)	GPA: 4.09/4.33
 Advisor: Hang Ma Course: [transcript] CMPT 983: Theoretical Foundations of Reinforcement Learning [A+] CMPT 981: Optimization for Machine Learning [A] CMPT 727: Statistical Machine Learning [A] CMPT 983: Graph Representation Learning [A] CMPT 827: Intelligent Systems [A+] CMPT 741: Data Mining [A] Thesis: Learning Cooperation for Partially Observable Multi-Agent Path H Committee: Oliver Schulte, Xue Bin Peng 	Finding [pdf] [slides]
Southern University of Science and Technology (SUSTech), Shenzher B.Eng. in Computer Science and Technology	n, China <i>2016 - 2020</i> GPA: 3.75/4.00
• Departmental Highest Honors of Graduation	
RESEARCH EXPERIENCES Research Assistant, AIRob Lab (SFU Robotics Research Group)	09/2021- 12/2023
 supervised by Prof. Hang Ma focusing on reinforcement learning and multi-agent systems 	
Summer Research Program, Illinois Institute of Technology	07/2019
supervised by Prof. Xin Chen from Northwestern Universityfocusing on semantic segmentation of 3D point clouds for LiDAR sensor data	ata
PROJECTS	
Convergence Rates of Log-Linear Policy Gradient Methods	09/2023- 12/2023
 provide a general framework to derive convergence rates of policy gradien policy class by reducing the problem to the one in tabular softmax settings extend theoretical guarantees of softmax policy gradient methods to derive 	s

- extend theoretical guarantees of softmax policy gradient methods to derive theoretically guaranteed algorithms for log-linear policies with both exact and inexact policy evaluation
- empirically evaluate the proposed algorithms and compare them to standard policy gradient methods

A Survey of Apprenticeship Learning

- review literature for a few widely used apprenticeship learning algorithms
- empirically evaluate these methods on a shared benchmark

09/2022-12/2022

Moving Decentralized Agents in Formation

- propose a bi-objective multi-agent reinforcement learning framework to solve the tasks of formation control and path planning in multi-agent systems
- theoretically analyze the effectiveness of the proposed method; empirically evaluate its performance and compare it to other centralized baselines

Partially Observable Multi-Agent Path Finding

- propose a multi-agent actor-critic framework that utilizes the heuristic-based attention mechanisms
- empirically evaluate the proposed method over various instances in different environments

Semantic Segmentation of LiDAR Perception Data

- process LiDAR perception data of roadways via traditional computer vision methods
- achieve semantic object segmentation on 3D point clouds to identify lanes, poles, barriers, etc.

PUBLICATIONS, PREPRINTS, AND REPORTS

Publications

• SACHA: Soft Actor-Critic with Heuristic-Based Attention for Partially Observable **Multi-Agent Path Finding** Qiushi Lin and Hang Ma.

In IEEE Robotics and Automation Letters (RA-L) 2023 [pdf] [code]

Preprints

• Mean Field Control with Envelope *Q*-learning for Moving Decentralized Agents in Formation

Qiushi Lin and Hang Ma. Preprint (In Submission) [pdf] [code]

Reports

(* = equal contribution)

- On the Convergence Rates of Log-Linear Policy Gradient Methods [pdf] [code] Qiushi Lin^{*}, Matin Aghaei^{*}, Anderson de Andrade^{*}, Sharan Vaswani.
- A Survey of Apprenticeship Learning [pdf] Qiushi Lin*, Ziqian Bai*, Minh Bui*, Jiaqi Tan*.

AWARDS AND HONORS

• Westak International Sales Inc. Graduate Scholarship, SFU	2023
• Departmental Highest Honors of Graduation, SUSTech	2020

• Departmental Highest Honors of Graduation, SUSTech

TEACHING EXPERIENCES

Teaching Assistant, SFU

- MACM 101: Discrete Mathematics
- CMPT 310: Introduction to Artificial Intelligence
- CMPT 417/827: Intelligent Systems

TECHNICAL SKILLS

Programming Languages: Python, C/C++, MATLAB, SQL Frameworks and Tools: Pytorch, Tensorflow, Linux, GitHub, LaTeX

07/2019

02/2023-05/2022